
Pergamon 
Inr. J. Heor Mass Trmfer. Vol 39, No. IS, pp. 3139-3145.1996 

Copyright 0 1996 Elwier Science Ltd 
Printed in Great Bntain. All rights reserved 

0017-9310196 115.00f0.00 

PII : SOO17-9310(%)00002-6 

Heat transfer regime map for electronic devices 
cooling 

KAZUYOSHI FUSHINOBU,t KUNIO HIJIKATA and YASUO KUROSAKI 
Faculty of Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan 

(Received 30 August 1995 and infinalform 8 December 1995) 

Abstract-A simple analytical model that predicts the temperature rise of a small heater on an unheated 
substrate is presented. The model approximates uniform temperature over both the heater and the substrate, 
although they have spatial distributions in actual case. A rigorous numerical calculation has been performed 
to verify the model results. A regime map is constructed based on the analytical model. Each regime in the 
map is named in order to show the time dependency and the governing heat transfer mode of the heater 

temperature rise. Copyright 0 1996 Elsevier Science Ltd. 

INTRODUCTION 

Background 
Due to the continuous miniaturization of electronic 

devices, the thermal design of these devices is becom- 
ing more and more important. Since the purpose of the 
thermal design is to predict or to control equipment 
reliability, the temperatures of heat generating com- 
ponents where device failure occurs must be known. 
Significant progress in the thermal issues of electronic 
equipment has been made so far. However, most of the 
works are aimed at specific applications or geometries, 
hence they cannot be applied to general kinds of prob- 
lems. A new model that yields more general heat trans- 
fer characteristics is therefore needed. 

The heat transfer problem in electronic equipment 
can be modeled as an array of heat generating com- 
ponents (heater) mounted on a nonheating substrate 
and exposed to a moving cooling fluid. The heater 
has, in general, two heat transfer paths: direct heat 
transfer from the heater to the fluid and heat con- 
duction through the substrate, followed by heat trans- 
fer from the substrate to the fluid. It is therefore a 
conjugate heat transfer problem and both mechanisms 
must be accounted for in a heat transfer model. 

Previous works 
Although several studies considered the conjugate 

nature of the electronic components cooling [l, 21, self 
heating effect of each device was first presented by 
Hijikata et al. [3], who analyzed the heat transfer 
characteristics from electrically heated diode elements 
in an IC chip. In this work, the plastic cover of the IC 
chip was removed to directly expose the internal diode 

t Address : Department of Mechanical and Intelligent 
Systems Engineering, Tokyo Institute of Technology, 
Meguro-ku, Tokyo 152, Japan. 

elements to the air impingement cooling. The tem- 
perature of each diode element was measured to be 
much higher than that of the chip bulk value. It was 
suggested that the chip bulk temperature rise is deter- 
mined by the total heating rate that is given by the 
summation of the heat generation rate of each diode 
in the chip. However, it was also suggested that the 
local temperature rise, which is defined to be the tem- 
perature difference of each diode element and the chip 
bulk, is proportional to the heating rate of each diode. 

Due to the lack of the rigorous numerical approach 
to the problem, Nagasaki et al. [4] performed a three- 
dimensional steady-state numerical calculation of for- 
ced convection heat transfer from a small heater on a 
substrate. The conclusions of their work emphasized 
the difference of the governing heat transfer mode at 
different length scales ; although the substrate tem- 
perature is governed by the convection, the heater 
temperature rise is mainly determined by the con- 
duction heat transfer in the substrate. 

Due to the periodic nature of the electrical heating 
in many applications, Fushinobu et al. [5] proposed 
a three-dimensional, periodic steady-state numerical 
calculation of the temperature rise of the small heater 
on a substrate using a domain decomposition tech- 
nique. They concluded that the calculated results show 
a good agreement with previous experiments. A rig- 
orous tool to predict the temperature rise of the small 
heaters was developed that revealed the basic heat 
transfer characteristics. However, a simple predictive 
procedure for the heater temperature incorporating 
the obtained heat transfer characteristics has not yet 
been proposed. Since the engineering applications 
require simple and general temperature prediction 
tools, development of a new model is desired. 

Objectives 
This work develops a new, simple, and easy to use 

analytical model that predicts the general behavior of 
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NOMENCLATURE 

Bi Biot number 
Fo Fourier number 

.I’ heating frequency [Hz] 
imaginary unit = &i i 

L heater size [m] 
L substrate length [m] 

: 

substrate thickness [m] 
amplitude of periodic heat generation 
rate in a heater w] 

Re Reynolds number 
T temperature [K] 
t time [s]. 

Greek symbols 
a thermal diffusivity [m’ s ‘1 
11 iC heater-substrate size ratio = ,5,/L, 

2’, substrate thickness-length 
ratio = LJL, 

A: thermal conductivity [W (m-K) -‘I 
0 nondimensional temperature rise 
t nondimensional time. 

Subscripts 
C conduction governed heater local 

value 
co conduction governed heater local 

value atfjf, = 0 
e heater 
f fluid 
S substrate or convection governed 

substrate value 
so convection governed substrate value at 

.f;l.L = 0. 

the temperature rise of a small heater mounted on an Actual Modeled 

unheated substrate and cooled by a surrounding fluid. 
temperature distribution temperature distribution 
, A 

The model simulates the operating electronic devices 
in an integrated circuit chip. The boundary layer flow 
on a flat plate models the convective cooling. Fur- 
thermore, the velocity boundary layer starts before 
the thermal boundary layer, which appears most 
applications. A sinusoidal time-dependent heat gen- 
eration is considered in the heater. Since the maximum 
device temperature rise is the major concern during 
device operation, only the amplitude of the heater 
temperature rise is discussed. The model results are 
compared with the results of rigorous three-dimen- 
sional, periodic steady-state numerical computations. 
Finally, the model results are used to construct a 
regime map that indicates the heat transfer charac- 
teristics based on heater size and heating time. 

ANALYTICAL MODEL 

Modeling o/the temperature rise 
The numerical and experimental results [3, 41 sug- 

gest that although the substrate temperature rise is 
influenced by the fluid flow, the heater local tem- 
perature rise, which is defined as the temperature 
difference between the heater and the bulk substrate, 
is mainly governed by the heat conduction in the vicin- 
ity of the heater. The analytical model developed here 
thus assumes the heater temperature rise to be a com- 
bination of the conduction-governed heater tem- 
perature rise and the convection-governed substrate 
temperature rise. Figure 1 shows a schematic of the 
modeling of the temperature field. Uniform tem- 
perature increases in the heater and substrate 
temperatures approximate the actual temperature dis- 
tribution. The heater temperature rise, AT,, is given as 
a summation of the conduction-governed local heater 

Substrate 1 I Substrate 

Fig. 1. A schematic depicting the modeling of the substrate 
temperature distribution. The model approximates the uni- 
form temperature rise of both the heater and the substrate. 

temperature rise, AT,, and the convection-governed 
substrate temperature rise, AT,. Note that AT,, AT, 
and AT, are the amplitudes of time-dependent fluc- 
tuation of the temperatures 

Conduction-governed heater local temperature rise 
Amplitude of the conduction-governed local heater 

temperature rise, AT,, is determined from the periodic 
steady-state one-dimensional heat conduction solu- 
tion of a hemispherical heater in a semi-infinite med- 
ium [6], 

AT, = AQ(Z~I~L:)~‘!~j(l+Jt,f)~ftf}~‘:‘, (1) 

where A = 1, Q is the amplitude of the heat generation 
rate in the heater and has a unit of watts, and 
t, = L: (2cr,). Fushinobu et al. [5] concluded that equa- 
tion (1) gives lower values of the local heater tem- 
perature rise compared with the numerical and exper- 
imental results for the entire frequency range. The 
constant A = 1.14 is thus introduced here to improve 
the fit with the numerical results. Equation (1) is non- 
dimensionalized in the following form : 
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where h(x) = 0.332drPr’i3(U,,/vx)“2{1-(L,/~)3’4}~1’3, 

fife = jkLf/aS = (2Fo,)-‘ . (3) 

The frequency, fc = a,/(nL,‘), represents a typical 

(8) 

heating frequency below which AT, can be approxi- 
mated by its steady-state value and above which the 
approximation is no longer valid. 

Convection-governed substrate temperature rise 

where Ir is the fluid thermal conductivity, x is the 
distance from the starting point of the velocity bound- 
ary layer, and L,, is the unheated starting length of the 
velocity boundary layer. Integration of equation (8) 
over the entire substrate length from x = LO to L, + L,, 
divided by the substrate thermal conductivity I,, gives 
the Biot number. 

Amplitude of the convection-governed substrate 
temperature rise, AT,, is determined from the fol- 
lowing relationship : 

dT,(t) 
PSC, K 7 = -h4{Ts(t)-To)+Q(O> (4) 

where pS is the substrate density, c, is the substrate 
specific heat, h is the heat transfer coefficient of the 
substrate cooling, A, = Li is the upper surface area 
of the substrate, L, is the substrate length, V, = A, x L,, 
is the substrate volume, L, is the substrate thickness, 
T,(t) is the substrate temperature as a function of time, 
TO is the ambient temperature, and Q(t) is the heat 
generation rate as a function of time. As shown in 
Fig. 1, the substrate temperature T, is modeled to be 
lumped, i.e. uniform over the entire substrate. Equa- 
tion (4) can be easily solved with heat generation 
rate Q(t)Qcos(2@). The solution TJt) - TO shows 
sinusoidal time dependence, and the amplitude of the 
solution, 

AT, = Q{(27cp,c,VJ)* +(hA,)*}-I’* (5) 

is the desired substrate temperature rise. Equation (5) 
is nondimensionalized in the following form : 

Due to the consistency with the following numerical 
calculations section, the heater is located on the sub- 
strate surface, and the heat transfer area, A,, is defined 
as the upper surface area of the substrate. Note, 
however, that the present analysis allows the heater 
to be embedded in the substrate. This is due to the fact 
that 0, is derived from the heat conduction equation in 
the substrate, and it is easily calculated when the 
heater is embedded. Once 0, can be accurately mode- 
led, equation (7) can be used in the heater temperature 
calculation. Another issue to be noted is that A, can 
be any part of the substrate surface where h is defined. 
For instance, when many heaters are mounted on the 
substrate, the A, of each individual heater effectively 
decreases proportional to the number of heaters. In 
these cases, the substrate surface area divided by the 
number of heaters can be used as A,. These are the 
advantages of the present analysis when used in mic- 
roelectronics applications, where many micro heat 
generating devices are fabricated on the semi- 
conductor chips and sealed with plastic molds or other 
materials. With the appropriate modeling of 0, and 
A,, 8, of the micro heat generating devices, such as 
transistors, can be estimated in a similar manner. 

4 = AT,&LlQ = ~(2~.~fi~~_0* + GWye)*~-“*~ 

(6) 

where Bi, = hL,/I, is the Biot number, ye = L,/LS is 
heater-substrate size ratio, and y,, = LJL, is the sub- 
strate thickness-size ratio. 

NUMERICAL CALCULATION 

Figure 2 shows the computational domain of the 
numerical calculation. The computational domain 
consists of a substrate and the fluid flow. A heater, 
which is the only heat generating region heating 

Finally, the nondimensional amplitude of the heater 
temperature rise 0. is given as a combination of equa- 
tions (2) and (6) as follows : 

8, = e,+e,. (7) 

Equation (7) gives the analytical values of the 
maximum heater temperature rise as a function of 
nondimensional heating frequency, convective coo- 
ling condition and size parameters. 

Calculation of equation (7) requires an estimation 
of the Biot number, Si,, which requires the value of the 
average heat transfer coefficient of the upper substrate 
surface h. Since the boundary layer flow over a flat 
plate is considered in the present work, the local heat 
transfer coefficient that incorporates the unheated 
starting length of the velocity boundary layer [7] can 
be used, 

Fig. 2. A schematic of the three-dimensional computational 
domain. The domain consists of the fluid, substrate and the 

heating element. 
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element, exists on the substrate at the fluid-substrate 
interface. The heater size L, given in Fig. 2 cor- 
responds to L, and L, is LJ2. Uniform heat generation 
is assumed in the heater. The velocity profile in the 
fluid flow is given by a similarity solution of the 
boundary layer flow on a flat plate. The detail is given 
in Nagasaki et al. [4]. 

The numerical calculation is based on the previous 
works [4, 51. In the present work, however, the per- 
iodic steady-state temperature field in the solid sub- 
strate and fluid flow is obtained. The non- 
dimensionalized energy equation. 

is solved numerically in the fluid and substrate, respec- 
tively. In the equation, Fo, is the Fourier number, 8 
is the nondimensional temperature rise as a function 
of time and position, z is the nondimensional time, Re 
is the Reynolds number, Pr is the Prandtl number, 5. 
n and [ are the nondimensionalized coordinates, z? and 
fi are the nondimensionalized velocities. and e is the 
nondimensional heat generation rate per unit volume 
as a function of time and position. The suffix ‘m’ 
denotes either ‘f (fluid) or ‘s’ (substrate). Since the 
heat generation occurs only in the heater. the heat 
generation term 0 has a finite and uniform value in 
the heater and is zero the rest of the substrate and the 
fluid. The nondimensional fluid velocities ii and 27 are 
zero in the substrate. Nondimensionalization follows 
the previous works. however, some of the definitions 
are given below for further discussions : 

Fo, = z,,,i(2?$L,Z) (lOa) 

Re = UOL,p (lob) 

@ = (T- ~oV,LIQ (1Oc) 

where x, is the thermal diffusivity of either the fluid 
(zr) or the substrate (a,),f‘is the heating frequency. L, 
is the heater size, U, is the bulk fluid velocity, v is the 
fluid kinematic viscosity, T is the dimensional tem- 
perature as a function of time and position, r0 is the 
ambient temperature, and A, is the substrate thermal 
conductivity. 

The heater-substrate size ratio, j:. does not 
explicitly appear in the derivation of the governing 
equation, although it is the major parameter that gov- 
erns the heater temperature rise. The parameter deter- 
mines the nondimension substrate size. It is therefore 
expected that ye predominantly governs the heater 
temperature rise through the heat capacity of the sub- 
strate and the effect of the boundary conditions. 

Equation (9) is solved numerically under sinusoidal 
periodic steady-state heat input in the heater. The 
complex temperature, B = 0; exp(it) = B+i@. is 
therefore introduced [5] to reduce the computation 

time, where the real part corresponds to the non- 
dimensional temperature in equation (9). Details of 
the derivation are given in Fushinobu et al. [5]. Note 
that the calculated heater temperature rise is a sinus- 
oidal function of the time. However, only its ampli- 
tude, 19,, is presented and compared with the analytical 
results in the following discussions, because the ampli- 
tude is the major concern in most applications. 

A domain decomposition technique is employed in 
order to accurately predict the temperature field at 
small length scales in a large computational domain. 
An adiabatic boundary condition is applied at all the 
surfaces except for the in-flow and out-flow bound- 
aries of gas. The details of the numerical calculation 
are given in elsewhere [4, 51. 

RESULTS AND DISCUSSKINS 

Comparison between the modeled analysis and the 
numerical calculation 

Figure 3 shows the comparison between the ana- 
lytical model and the numerical calculation. The hori- 
zontal axis denotes the nondimensional heating fre- 
quencyj%f;. and is equal to a half of the inverse of the 
substrate Fourier number, 1/(2Fo,), from its defi- 

Nondimensional heating frequency , ff f = 1 f (24) 

(a) ye = i/2 

Nondimensional heating frequency , fl fe = 1 I (2Fo.J 

(b) */a = i/16 

Nondimensional heating frequency , f/ $ = 1 I (2Fo3 

(c) ye = i/512 

Fig. 3. Calculated nondimensional heater temperature rise 8, 
as a function of nondimensional heating frequencyflf,. 
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nition. The range of f/fe in Fig. 3(a), for instance, 
corresponds up to f = 73 MHz, which covers the oper- 
ation frequency of most of the silicon based devices, 
for a 20 pm heat generating device on a 1 cm silicon 
chip. The vertical axis is the amplitude of the non- 
dimensional heater temperature rise Be. The results 
are compared under various conditions : two different 
substrate materials (Si and Glass), two Reynolds num- 
bers (Re, = 103, 105), and three heater-substrate 
size ratios (ye = L,/L, = l/2,1/16,1/512). The cor- 
responding Biot numbers are given in Fig. 3(a). The 
solid lines represent the modeled analytical solution 
and the symbols denote the rigorous numerical results. 
The circular and the triangular symbols denote the 
silicon substrate and the glass substrate case, respec- 
tively. 

The definition of the Reynolds number, Rex, used 
here is different from equation (lob), where the heater 
size L, is used for characteristic length. It is 

(11) 

where x, is the distance between the beginning of the 
boundary layer to the center of the heater. The values 
of the Reynolds number, Re, = lo3 and lo’, in Fig. 3 
confirm the laminar air flow. The values, Re, = lo3 
and lo’, correspond to the following values of pre- 
viously defined Reynolds number at each heater-sub- 
strate size ratio : Re = 290 and 2900 at ye = l/2, 
Re=36and360aty,=1/16,andRe=l.landllat 
yc = l/512. These Reynolds numbers correspond to 
U, = 0.8 _ 8 m s-r when air is flowing over the 1 cm 
length substrate. 

The comparison between the numerical and ana- 
lytical results gives excellent agreement over the entire 
frequency range, despite the rough approximation of 
the modeled temperature. Although the maximum 
relative error of the analytical results to the numerical 
results reaches 25% at fife = 1 in Fig. 3(a), 23% at 
fife = 5 x lo-‘in Fig. 3(b), and 19% atf’ = lo-‘in 
Fig. 3(c) on ‘Si-Air : Rex = 103’, the relative errors are 
within + 10% in general. This agreement suggests that 
the simple analytical model is a good substitute for 
the rigorous numerical calculation. 

The results show interesting features. First, 
especially in the case of the silicon substrate with 
ye < 1 /16,6, reaches a constant value to form a plateau 
region with decreasing ffe ; however, it again starts to 
increase and forms another plateau. These two plateau 
regions can be explained by the penetration depth of 
the heat conduction for periodic heating case 
Lth = (cc,t*)“2, where t* = 1/(27rf) is the characteristic 
heating time scale. The penetration depth, Lth, which 
is equal to (Fo,)“‘L, from its definition, reaches about 
seven times longer than the heater size (L,,, = 7.1 x L,) 
when the nondimensional heating frequency, 
fife = l/(2&), is equal to 10e2 for instance. Appar- 
ently it exceeds the heater size and the temperature 
profile at the heater size length scale can be regarded 
as reaching its steady-state profile. However, the sub- 

strate size is larger than the penetration depth, and 
the temperature profile at the substrate size length 
scale can rise with increasing the characteristic heating 
time scale. It can thus be explained that the first con- 
stant value is a constant value for the local heater 
temperature rise, & and the final constant value is for 
the substrate temperature rise, 8,. 

Secondly, the value of the second plateau region, 
which appears at lower heating frequency, drastically 
varies with changing the parameters. For example, the 
highest value (0, = 2.52 x 102) in Fig. 3(a) is more 
than 500 times bigger than the smallest value in Fig. 
3(c). Comparison of the figures show that ee decreases 
with the increasing Bi, and the decreasing ye. Since the 
local heater temperature rise 0, is a function of only 
f/f=, as shown in equation (2), the variation of & is 
attributed to the substrate temperature rise 8, that is 
governed by the convection heat transfer. Note also 
that the local heater temperature rise at fife = 0, 
0, = 0.455, cannot be neglected compared with the 
substrate temperature rise, 0, = ee - f$ = 0.955, when 
Si-Air, Re, = lo’, and ye = l/512. This comparison 
suggests that the temperature of small electronic 
devices in ICs can be much higher than the chip bulk 
temperature, and that the rigorous device temperature 
estimation requires the device level heat transfer 
characteristics. 

Regime map for convective cooling of a small heater on 
a substrate 

Discussions on Fig. 3 revealed two important issues 
that govern the heater temperature rise, namely, (a) 
whether the convection-governed substrate heater 
temperature rise dominates the heater temperature or 
the conduction-governed local heater temperature rise 
does, and (b) whether or not 0, and 8, reach their 
steady-state values. These conditions reduce to the 
following criteria : 

8, is negligible compared with Bs when 

8, = 0.1 xe, (124 

8, is negligible compared with Bc when 

e, = 0.1 x 8, (12b) 

8, reaches a constant value when 

ec = 0.9 x e, WC) 

8, reaches a constant value when 

8, = 0.9 x eso. (124 

Here, 10% is chosen to be the critical value. The 
constants &, and 0,, represent the values of 0, and 0, at 
flfc = 0, respectively. Equation (12a-d) can be easily 
calculated with equations (2) and (6) and give the 



3144 K. FUSHINOBU et al. 

10-Q10"10-'lo~10~~10410"10~*10-'10010'102103 

Nondimensional heating frequency , fl f. = 1 I (2Fo.J 

Fig. 4. Typical regime map for heater temperature prediction 
(Bi, = 0.1, 2’, = 0.1). 

heat transfer regime map shown in Fig. 4. The hori- 
zontal axis is the nondimensional heating frequency 
f’, and the vertical axis is the heater-substrate size 
ratio ye. Since the regime map is constructed based on 
equations (2) and (6), the map varies with two key 
parameters in the equations; the Biot number, Bi,, 
and the substrate thickness-length ratio yI = LJL,. 
Arbitrary values are chosen here to be Bis = 0.1 and 

Y, = 0.1 to discuss the general behavior. 
Firstly, Fig. 4 shows the governing heat transfer 

mode that determines the heater temperature rise. 
Below the line named ‘0, = 0.1 x O,‘, 8, can be neg- 
lected compared with B,, while 0, can be neglected 
compared with 0, above the line named ‘8, = 0.1 x 8,‘. 
The conjugate conduction and convection heat trans- 
fer nature of the problem must be considered in the 
regime between the two lines. Note that the convection 
effect does not appear y. < 4.6 x 10e3 regardless of 
,fife. Since the substrate temperature rise is negligibly 
smaller than the local heater temperature rise in this 
regime, the convection effect on the heater tempera- 
ture, which appears through the substrate temperature 
change, is also negligible. Also the governing heat 
transfer mode varies with increasing heating 
frequency, even if the heater-substrate size ratio is 
constant. 

Secondly, Fig. 4 shows the heater temperature 
should be determined from either a periodic steady- 
state governing equation or a steady-state equation. 
Here the periodic steady-state governing equation 
means the time-dependent energy equation, such as 
equation (9). with periodic heating term, and the 
steady-state equation means the energy equation with- 
out any time-dependent term. When ,fif, is smaller 
than the lines named ‘8, = 0.9 x 0,“’ and 
‘8, = 0.9 x f&‘, and 0, can be regarded as constant 
values, respectively. Thus, 0, = 0, + 8, is constant 
when ffe is smaller than the line of ‘0, = 0.9 x OS,,‘, and 
the steady-state governing equation can be used to 
evaluate the heater temperature. On the other hand. 
both 0, and 0, depend on the heating frequency when 
flA is bigger than the line of ‘0, = 0.9 x ~9~,,‘, and the 
periodic steady-state governing equation must be 
used. The periodic steady-state substrate temperature 
rise and the steady-state heater local temperature rise 

should be combined in the regime between the two 
lines. 

Based on the above discussions, the regime map is 
divided into the following seven regimes ; the periodic 
steady-state conduction-governed heater local tem- 
perature rise is dominant in the ‘periodic conduction 
regime’, the steady-state heater local temperature rise 
in the ‘steady conduction regime’, the periodic steady- 
state convection-governed substrate temperature rise 
in the ‘periodic convection regime’, and the steady- 
state substrate temperature rise in the ‘steady con- 
vection regime’. Steady-state temperature rise of both 
the heater local and the substrate is important in the 
‘steady conjugate regime’, periodic steady-state tem- 
perature rise of both the heater local and the substrate 
in the ‘periodic conjugate regime’, and the steady-state 
heater local temperature rise and the periodic steady- 
state substrate temperature rise should be combined 
to give 0, in the ‘combined conjugate regime.’ 

Figure 5 shows the regime map for the parameters 
used in the present numerical calculations. The solid 
lines denote the limit for steady-state temperature, 
and the thicker solid lines denote the governing heat 
transfer mode. The dashed lines are plotted to show 
the value of y. = l/512 for the following discussions. 
The differences in Fig. S(a-d) basically reside in the 
change of Bi, from 1.94 x lo-’ to 0.598. 

Figure S(a) and (b) are regime maps for the silicon 
substrate cases. Although the lines of ‘0, = 0.1 x 0,’ 
do not show constant values of ye at lower frequencies 
in the figures, they reach constant values of 
-1 = 8.9x 10e5 at f/h < lo-” for Fig. S(a) and ,e 
7, = 1.9 x lO-4 at ,flh < IO-” for Fig. 5(b). It can 
be seen in Fig. 5(a) that the governing heat transfer 
characteristics changes with fife at constant ye. At 
ye = l/512, the heater temperature is in the ‘periodic 
conduction regime’ above fife = 7 x lo-‘, ‘steady con- 
duction regime’ below,ffc = 7 x lo-*, ‘combined con- 
jugate regime’ below f/f= = 7 x lo-‘, and ‘steady con- 
jugate regime’ below f/lfe = 1.5 x lo-‘. These values 
correspond to the frequency-dependent behavior of 
the curve in Fig. 3(c). It can be also seen from these 
figures that the heater temperature rise 0, can actually 
be well predicted by ignoring the local heater tem- 
perature rise f3, above the ‘8, = 0.1 x 0, line. For 
instance, the temperature rise of steady-operation 
electronic devices bigger than 200 pm* on a 1 cm’ 
silicon chip is nearly equal to the bulk chip tem- 
perature rise. This means that the thermal design of 
the chip does not require device level consideration. 
However, the device level consideration becomes 
important below the line ; the local temperature rise 
can become far above the chip bulk temperature rise 
for devices typically smaller than 1 pm*. For example, 
transistors with 1 mW heat generation rate and 0.5 
pm characteristic dimension give more than 5 K local 
temperature rise. 

Comparison between Fig. 5(a) and (b) shows that 
the ‘steady convection regime’ becomes smaller when 
the Biot number is increased. This is due to the 
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